

(Σ, T) Generalized Derivations in Prime Rings

DR. K.L. Kaushik

Associate Professor in Mathematics Aggarwal College, Ballabgarh Faridabad, INDIA

ABSTRACT: We prove that $[x,yz]_{\sigma,\tau} = \tau(y)[x,y]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z)$, where σ,τ are the automorphisms of R, R is 2torsion free Prime ring.

Finally, we have proved a Theorem from which Mohammad Ashraf and Nadeem UrRehman [2] Lemma 2.2 on Page 260 can be derived immediately.

Keywords 2-torsion free, Prime Ring, (σ, τ) generalized derivation, Automorphism.

Date of Submission: 15-09-2020	Date of Acceptance: 26-09-2020

I. INTRODUCTION

We have used Havala [1] definition, "LetR be a ring. The additive map $f : R \rightarrow R$ is said to be generalized derivation if

f(xy) = f(x)y + xd(y)

where dis derivation of R and $x,y \in R$. We have defined an additive mapping $f: R \rightarrow R$ is said to be (σ,τ) generalized derivation if

 $f(xy) = f(x)\sigma(y) + \sigma(x)d(y) \forall x, y \in R$ where σ_{τ} are automorphisms of R. We have proved that

 $[x,yz]_{\sigma,\tau} = \tau(y)[x,y]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z)$

Finally we proved a theorem "LetR be a 2torsion free ring, I be a non zero ideal of R. If R admits a (σ, τ) generalized derivation f such that $f^{2}(I) = (0)$ and f commutes with both σ, τ Then f = 0.d = 0.

From this Theorem we immediately derive Mohammad Ashraf and Nadeem Ur-Rehman [2] Lemma 2.2 on Page 260 as corollary.

 (σ, τ) Generalized Derivation 1

1.1 Definition(Prime Ring): Let A be any ring. Then its is said to be a Prime ring iff

 $xav = 0 a \in A \Rightarrow x = 0 \text{ or } v = 0$

1.2 Definition(2-Torsion free Prime Ring): A prime Ring A with characteristic different from 2 is called 2-Torsion free Prime Ring.

1.3 Definition $[x,y]_{\sigma,\tau}$: Let R be a 2-torsion free Prime ring. Let σ_{τ} are automorphisms of R. We set $[x,y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x \forall x,y \in \mathbb{R}$

1.4 Definition $((\sigma, \tau)$ Generalised Derivation): Havala [1] defined "An additive mapping $f: R \rightarrow$ R" is called Generalised Derivation if

f(xy) = f(x)y + xd(y)

where d is the derivation of R. We define an additive mapping $f : \mathbb{R} \to \mathbb{R}^n$ is called (σ, τ) Generalised Derivation if

 $f(xy) = f(x)\sigma(y) + \tau(x)d(y) \forall x, y \in R$ Lemma 1.5. Prove that

 $[xy,z]_{\sigma,\tau} = x[y,z]_{\sigma,\tau} + [x,\tau(z)]y = x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y$

Proof Now

 $xy\sigma(z) - \tau(z)xy$ $[xy,\!z]_{\sigma,\tau}$ $xy\sigma(z) - x\tau(z)y + x\tau(z)y - \tau(z)xy$ = $x(y\sigma(z) - \tau(z)y) + (x\tau(z) - \tau(z)x)y$ =

> $x[y,z]_{\sigma,\tau}+[x,\tau(z)]y$ =

Hence 1st part is proved.

Now 2nd part

$$= xy\sigma(z) - \tau(z)xy$$

$$[xy,z]_{\sigma,\tau}$$

$$= xy\sigma(z) - x\sigma(z)y + x\sigma(z)y - \tau(z)xy$$

$$= x(y\sigma(z) - x\sigma(z)) + (x\sigma(z) - \tau(z)x)y$$

$$= x[y,\sigma(z)] + [x,z]_{\sigma,\tau}y$$

Hence proved. **Lemma 1.6.** Prove that $[x,yz]_{\sigma,\tau} = \tau(y)[x,y]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z)$ **Proof** Now

$$\begin{split} [x,yz]_{\sigma,\tau} &= x\sigma(yz) - \tau(yz)x \\ &= x\sigma(y)\sigma(z) - \tau(y)\tau(z)x \quad (\because \sigma, \tau are automorphisms) \\ &= x\sigma(y)\sigma(z) - \tau(y)x\sigma(z) + \tau(y)x\sigma(z) - \tau(y)\tau(z)x \\ &= (x\sigma(y) - \tau(y)x)\sigma(z) + \tau(y)(x\sigma(z) - \tau(z)x) \\ &= [x,y]_{\sigma,\tau}\sigma(z) + \tau(y)[x,z]_{\sigma,\tau} \end{split}$$

Hence proved.

2. Now we prove a Theorem 2.2 which would be useful in getting results generalized derivation. We will use the following Lemma to prove Theorem 2.2.

Lemma 2.1 Let R be a prime ring, I 6=0 Ideal of R and $a \in R$. If R admits a (σ, τ) derivation d such that ad(I) = 0 or d(I)a = 0 $\Rightarrow f(f(xy)) = 0$ Then either d = 0 or a = 0. **Theorem 2.2** Let R be a 2-Torsion free ring, I be a nonzero Ideal of R. If R admits a (σ, τ) generalized derivation f such that $f^2(I) = (0)$ and f commutes with both σ, τ Then f = 0, d = 0. **Proof** For any $x \in I$, we have $f^2(x) = 0$ Replacing x by xy, we get $f^2(xy) = 0$

$$\begin{array}{l} \Rightarrow \ f\left(f(x)\sigma(y) + \tau(x)d(y)\right) = 0 \\ \Rightarrow \ f\left(f(x)\sigma(y)\right) + f\left(\tau(x)d(y)\right) = 0 \\ \Rightarrow \ f\left(f(x)\right)\sigma\left(\sigma(y)\right) + \tau(f(x))d(\sigma(y)) + f(\tau(x))\sigma(d(y)) + \tau(\tau(x))d(d(y)) = 0 \\ \Rightarrow \ f^{2}(x)\sigma^{2}(y) + \tau(f(x))d(\sigma(y)) + f(\tau(x))\sigma(d(y)) + \tau^{2}(x)d^{2}(y) = 0 \\ = 0 \\ = 0 \\ \Rightarrow \ \tau(f(x))d(\sigma(y)) + f(\tau(x))\sigma(d(y)) = 0 \\ \Rightarrow \ \tau(f(x))\sigma(d(y)) + \tau(f(x))\sigma(d(y)) = 0 \end{array}$$

 $\begin{aligned} &(\because f \text{ and } d \text{ both commutes } \sigma, \tau) \\ &\Rightarrow 2\tau(f(x))\sigma(d(y)) = 0 \\ &\Rightarrow \tau(f(x))\sigma(d(y)) = 0 \\ &\Rightarrow \sigma^{-1}(\tau(f(x)))d(y) = 0 \ \forall \ x, y \in I \\ &\Rightarrow By \text{ Lemma } 2.1 \text{ either } d = 0 \text{ or } \sigma^{-1}(\tau(f(x))) = 0 \end{aligned}$

$$\begin{split} & If \ \sigma^{-1}(\tau(f(x)) = 0 \ \forall \ x \in I \\ \Rightarrow \tau(f(x)) = 0 \ \because \ \sigma = \text{automorphism} \\ \Rightarrow f(x) = 0 \ \forall \ x \in I, \qquad \because \ \tau = \\ automorphism \\ & \text{Replacing} \qquad xbyxr, \ r \in R \end{split}$$

$$f(xr) = 0$$

$$\Rightarrow f(x)\sigma(r) + \tau(x)d(r) = 0$$

$$\Rightarrow \tau(x)d(r) = 0$$

$$\Rightarrow \tau^{-1}(\tau(x))\tau^{-1}(d(r)) = 0$$

$$\Rightarrow x\tau^{-1}(d(r)) = 0$$

$$\Rightarrow \tau^{-1}(d(r)) = 0$$

$$\Rightarrow d(r) = 0$$

$$\Rightarrow d = 0$$

$$\Rightarrow f = 0 \qquad d = 0$$

Hence proved.

Corollary 2.2.1 Replacing f by d, we get Mohd. Asraf and Nadeem-Ur-Rahman [2] Lemma 2.2 on page 260.

II. CONCLUSION

In this Paper we proved that $[x,yz]_{\sigma,\tau} = \tau(y)[x,y]_{\sigma,\tau} + [x,y]_{\sigma,\tau}\sigma(z)$, where σ,τ are the automorphisms of R. Using this we proved our theorem

"LetR be a 2-torsion free ring, I be a non zero ideal of R. If R admits a (σ,τ) generalized derivation f such that $f^2(I) = (0)$ and f commutes with both σ,τ Then f = 0,d = 0," from which Mohammad Ashraf and Nadeem Ur-Rehman [2] Lemma 2.2 on Page 260 comes out as a corollary.

REFERENCES

- [1]. Havala, B. generalized Derivations in rings, Communication in Algbera 26 (4), 11471166 (1998).
- [2]. Mohammad Ashraf and Nadeem Ur-Rehman, "On (σ, τ) -Derivations in Prime rings" Archivum Mathematicum (BRNO) Tomus 38 (2002) 259-264.
- [3]. Jacobson Nathan, Lie algebras. Interscience Publishers, New York (1992)
- [4]. I. N. Herstein, Jordan Derivation of Prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110.